Mozaikler nasıl oluşur?


Mozaik sanatı farklı geometrik şekillere sahip parçaların aralarında boşluk kalmadan ve parçalar üst üste gelmeden düz bir yüzeyi kaplayacak şekilde birleştirilmesi olarak tanımlanabilir. Bu tür kaplamaların doğadaki örnekleriyle ve insan yapımı uygulamalarıyla sıkça karşılaşırız. Altıgen şekillerden oluşan bal peteği ve kaldırımlar bu kaplamaların çevremizdeki göze çarpan örneklerinden.

Ancak bir yüzeyin farklı parçalar birleştirilerek kaplanması matematikçiler için daha karmaşık anlamlara sahip bir kavram.

Örneğin kaplanmış bir zeminde düz bir şekilde yürüdüğünüzü düşünün. Belli desenlerin düzenli aralıklarla tekrar ettiğini fark ettiyseniz, bu tür kaplamalar periyodik olarak adlandırılabilir. Ancak farklı parçalardan oluşan kaplamaları periyodik olarak tanımlayabilmek için, parçaların iki boyutlu bir düzlemde her iki yönde de düzenli olarak tekrar etmesi gerekir. Bir kaplamanın periyodik olup olmadığını basit bir deneyle anlayabilirsiniz. Bir eskiz kâğıdına çizdiğiniz tekrar eden mozaik deseninin kopyasını, zemin üzerinde döndürmeden belli bir yönde kaydırdığınızda, alttaki desenle eşleşiyorsa mozaiğin periyodik olduğu söylenebilir.

Peki, periyodik olmayan yani belirli düzende tekrar etmeyen bir zemin kaplamasının oluşturulması mümkün müdür?

İlk olarak bir kaplamanın periyodik olmadığına nasıl karar verebiliriz sorusuna cevap vermeye çalışalım. Periyodik olmayan (aperiyodik) mozaiklerin en önemli özelliği mozaiği oluşturan desenlerin belirli aralıklarla tekrar etmemesidir. Bir mozaiğin periyodik olup olmadığını anlamak için kullandığımız yöntemden burada da yararlanabiliriz. Tekrar eden mozaik deseninin kopyasını zemin üzerinde kaydırdığımızda ya da ayna görüntüsünü aldığımızda alttaki desenle eşleşmiyorsa bu tür kaplamalar aperiyodik olarak sınıflandırılabilir. Ancak tekrar eden desen taslağı döndürüldüğünde alttaki desenle eşleşiyorsa yani dönme simetrisine sahipse bu tür kaplamalar aperiyodik olarak sınıflandırılabilir.

İnsanların güzellik anlayışları simetri kavramıyla yakından ilişkili. Simetri, tasarımı oluşturan bileşenlerin daha dengeli yerleşmesine olanak sağlar. Farklı simetri türleri vardır. Yani tekrar eden desen farklı şekillerde hareket ettirilerek, örneğin döndürülerek, öteleyerek ya da ayna görüntüsü alınarak farklı simetri türeleri elde edilebilir.

<



Sancaktepe Bilim Merkezi, Sancaktepe Belediyesi'nin kurumudur.Düzenlediğimiz tüm etkinlikler ücretsizdir.

Web Design